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Abstract This article shows that by using ab initio or first
principle calculations it is possible to obtain reliable ingre-
dients needed to simulate pump-probe and optimal control
experiments. Our experimental challenge is to elucidate the
reaction mechanism behind an optimal pulse tailored to max-
imize ionization in the system CpMn(CO)3, while avoiding
CO dissociation. Starting from MRCI/CASSCF potential en-
ergy curves calculated along the relevant CO fragmentation
channel, we use the resulting MRCI wave function to esti-
mate non-adiabatic couplings, as well as neutral-to-neutral
and neutral-to-ionic dipole couplings. The state-of-the-art
potentials and couplings serve to perform wave packet propa-
gations which simulate the femtosecond pump-probe spectra
that explain the features shown in the experimental optimal
pulse.

Keywords Organometallics · Multiconfigurational meth-
ods · Reaction dynamics · Femtochemistry · Optimal
control

1 Introduction

Quantum control of chemical reactions is a field which has
awaked in the last decade, spurred by the availability of fem-
tosecond (fs) lasers [1]. Reasons to follow up this emerging
field of modern chemistry are in plenty. Chemistry is a disci-
pline that has been born from the necessity of transforming
reactants into products with the maximum efficiency. The
new concept of controlling chemical reactions implies not
only the need to maximize desired products and minimize
by-products, but also the synthesis of new molecular spe-
cies, the design of new materials, and even the execution of
chemical and biological functions. The process of realization
of such goals and many more is still in its formative years but
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is reshaping quickly. According to the prevailing experiments
and based on the available theoretical simulations, it is nat-
ural to predict that the path of quantum control will provide
exciting scientific knowledge and innovative technology in
the near future.

In the frame of traditional chemistry one can think of
achieving thermodynamic or kinetic control. Thermodynamic
control is well established to the extent that variables like tem-
perature, pressure or concentration can influence the course
of a reaction; kinetic control is also well mastered by using
catalysts that can reduce the reaction barrier of the desired
reactive channel. These tools, however, do not access the
microscopic behavior of a chemical reaction.

With the advent of photochemistry, light emerged as a
powerful tool to steer reactions. Control may be achieved by
exciting the system to potential energy surfaces (PESs) where
the free energy between reactants and products is different
from the one given in the electronic ground state. Kinetic con-
trol can be accomplished surpassing the reaction barriers by
means of appropriate photo-excitations. Unfortunately, the
success of this traditional photochemistry is conditioned by
the quantum mechanical temporal evolution of the system
as governed by the multidimensional coupled PESs. Again,
however, this conventional version of photochemistry does
not access the very microscopic behavior of a chemical reac-
tion, and consequently it is difficult to predict the outcome
of a reaction, let alone control it.

When nanosecond (ns) lasers became available in the
1960s, the dream revived again. It was expected that by illu-
minating chemical compounds with lasers, reaction paths
could be steered in a preferred way. The idea relied on tuning
a laser with the vibrational frequency of a particular bond
so that the targeted bond is weakened and finally broken,
thereby encouraging a selected product. Unfortunately, this
concept, so-called mode-selective chemistry, ran up against
an unexpected difficulty: the couplings between the different
degrees of freedom quickly redistribute the energy depos-
ited in a particular bond throughout the molecule. Therefore,
because the typical pulse durations were too long to avoid
internal vibrational redistribution (IVR) in all but exceptional
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cases, selectivity was lost. Only when the vibrational modes
are nearly uncoupled control is possible. The epitomized
example is HOD, which possesses fundamental OH and OD
vibrational stretching frequencies separated by more than
1000 cm−1. In this case a well tuned intense infrared (IR)
ns laser pulse can selectively excite a given normal mode,
leading to OH+D or O+HD dissociation [2].

Looking at the time scales of molecular processes, it is
clear that the duration of the first – continuous wave (cw)
– lasers was much too long to intervene in the course of
a reaction. While photophysical processes like fluorescence
and phosphorescence occur in the ns time scale, rotations
need picoseconds (ps), and vibrations and conical intersec-
tions take place within a few fs; that is, the control over the
nuclear dynamics occurring in a chemical reaction needs fs
resolution. Therefore, it was necessary to wait for almost
30 years to see resurgence in the field of control of chemical
reactions. Theoretically, it was soon recognized that the ac-
tive manipulation of the quantum dynamics needs to exploit
quantum mechanical interference effects. See for instance
the seminal work of Brumer and Shapiro on coherent control
[3], the pump-dump or pump-control proposals from Tannor–
Kosloff–Rice [4,5], or the adiabatic strategy introduced by
Bergmann et al. [6] known as stimulated Raman adiabatic
passage (STIRAP). In the aforementioned proposals the con-
trol-knobs are the phase, the time delay or the linear chirp –
that is, it is one single parameter which influence the course
of a reaction. Experimentally, it was the arrival of fs lasers
[1] together with rigorous tools able to meet the requirements
of frequency and time shapes as imposed by the theory that
has made possible a burst of control activities [7].

Despite the experimental success in the control of small
chemical systems (see e.g. [1,8,9]) and the many efforts in-
vested in multidimensional dynamical studies (see e.g. [10,
11]), in most but the simplest systems, the search for an appro-
priate chemical path is again hampered by the incomplete
knowledge of the Hamiltonian. To overcome this limitation a
specially attractive control scheme based on feedback learn-
ing algorithms was introduced by Judson and Rabitz [12].
Genetic algorithms search the best pulse shapes to prepare
specific products based on fitness information, such as prod-
uct yields. This method, also called close-loop control or
simply optimal control, prepares the desired target solving
the Schrödinger equation exactly in real time through solv-
ing a many-parameter problem [13]. The first experimen-
tal verification of feedback or adaptive control was done in
photophysics by Wilson and coworkers [14], and later manip-
ulating chemical reactions by the group of Gerber [15,16]
and others [17–19]. While the first applications of optimal
control were directed to selective bond breaking [15,17,19],
it should be noted that optimal control can form new bonds
[18] or modify biological functions [20].

Although pragmatic, such optimal pulses have the incon-
venience that no physical information about the dynamics of
the system can be straightforwardly elucidated. In non-reac-
tive systems, this issue has been addressed in different ways.
For instance, one can repeat the optimization experiments

with a reduced number of parameters and compare the results
[13,20] or one can let the learning algorithm find control
variables [21]. Other strategies to learn about the system’s
dynamics incorporate spectral pressure during the optimiza-
tion [22], try to extract information from the experimental
data with various inversion algorithms [23–27], or include
liquid crystal spatial light modulators in the optimal control
theory to establish a link between experimental and theoret-
ical optimal pulses [28].

In reactive systems, the first successful understanding of
optimal control was made by our group for the optimization
of ionization versus ligand fragmentation in an organometal-
lic system, CpMn(CO)3. [29]. In this case, the link between
theory and experiment was achieved by the explicit calcula-
tion and analysis of the properties of the molecular system.
Exemplarily, our optimal pulse was designed to maximize the
yield of the parent ion CpMn(CO)+3 while hindering compet-
ing fragmentation, CpMn(CO)2 + CO.

For chemical reactions, like the one studied in [29], the
understanding of such experimental optimal pulses involves a
careful analysis of the underlying reaction dynamics. Hence,
the analysis of the quantum dynamics of a chemical reaction
is the primary step to ultimately guide a quantum system to
some final target state.

As will be outlined in the next section, quantum dynami-
cal simulations using wave packet propagation requires PESs.
Accurate PESs must be obtained by means of quantum
mechanical methods. Ab initio or first principle quantum
mechanical calculations are almost routine for medium size
molecules in the ground state. Most of the laser induced simu-
lations, however, occur in electronic excited states; this is not
surprising if one accounts for the fact that ultraviolet (UV)
laser techniques are much better developed than IR ones. As
a consequence, most of the control experiments performed in
the past decades involve electronically excited states [30]. It
is worth mentioning, however, that in the very last few years
IR laser pulses have been being developed at good pace; see
for instance [31,32], allowing the control of reactions in the
electronic ground state. In any case, for theoreticians, a spec-
troscopic experiment in the visible–UV range means that the
analysis of quantum dynamics in the electronic excited state
is directly linked not only with the fascinating problem of
understanding photochemical processes [33], but also with
the challenging task of obtaining PESs and related molecular
properties in electronically excited states.

It is the goal of this paper to show in a step-wise man-
ner the theoretical ingredients that are needed to simulate
control experiments. Since all of them are obtained starting
from an ab initio wave function, we call it a first princi-
ples approach. The system we employ, CpMn(CO)3, (where
Cp = η5 −C5H5), is big enough to be a representative exam-
ple of a multidimensional object, but small enough to be
treated in an accurate way. It is encouraging that, despite the
multidimensionality of the system, a wise selection of the
relevant degrees of freedom, together with accurate ab ini-
tio calculations can help to uncover the dynamical effects
induced by fs optimal laser pulses.
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Section 2 will present the model system and Sect. 3 will
go through the first principles strategy. Section 4 will show an
application of the data obtained in Sect. 3, and finally, Sect. 5
ends with a summary and an outlook.

2 Model

CpMn(CO)3 is shown in Fig. 1, together with the coordinate
system that is used here. Organometallic compounds contain-
ing metal and carbonyl chromophores have been the object of
profound interest because fragmentation occurs in electroni-
cally excited states. A large number of studies have concen-
trated on pump-probe experiments that follow the dynamics
of molecules electronically excited (see e.g. [34–36]). This
has, of course, also prompted numerous theoretical studies (a
few examples can be found in [37–42]) aiming at shedding
some light on the dynamics of the ultrafast photodissociation.

The principle of the pump–probe experiments is the fol-
lowing: an ultrashort laser pulse – the pump – excites the
molecule from the vibrational ground state of the electronic
ground state to some electronically excited state, which can
be bound, dissociative, or even more interesting, pre-disso-
ciative. In any case, the system evolves in time, it can show
molecular vibrations in the bond states or fragmentate in the
dissociative states. Such dynamical behavior can be mon-
itored by multi-photon ionization with a probe pulse that
arrives after a well-defined time delay, interrogating the sys-
tem at a particular location. Interestingly, since the detection
of the products is done after ionization, the path the system
follows after excitation is not a trivial question. Indeed, frag-
mentation may occur either on neutral or on ionic surfaces
without any difference in the detected fragmented ions. This
dilemma has recently received a great deal of attention. For
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Fig. 1 View of CpMn(CO)3 from the top, together with the coordinate
system used in the calculation of the potential energy surfaces (adapted
from [45]). COax stands for the axial carbonyl that is dissociated

instance, Trushin et al. [43] have studied dissociative ioni-
zation of different metal carbonyls, Ni(CO)4, Fe(CO)5 and
Cr(CO)6 at intensities between 1012–1014 W cm−2 finding
that neutral dissociation can be practically neglected; frag-
mentation is instead rationalized by resonances in ions. On
the other hand, our simulations indicate that the photodisso-
ciation of CpMn(CO)3 [29] starts on neutral surfaces.

Additionally, since carbonyl systems have interesting
dynamics, they were the first candidates to be used in opti-
mal control experiments; see the pioneer work of Gerber and
coworkers [15] on CpClFe(CO)2.

3 A first principles procedure

In this section, we will explain the procedure to simulate
the dynamics underlying optimal pulses. The time evolu-
tion of a system is simulated by laser driven nuclear wave
packets |�(t)> calculated as solution of the time-dependent
Schrödinger equation,

i h̄
∂

∂t
|�(t)〉 = Ĥ(t)|�(t)〉. (1)

In the total Hamiltonian operator of the system Ĥ(t),

Ĥ(t) = T̂ + V̂ + Ŵ (t). (2)

T̂ is the kinetic operator of the nuclei and V̂ the electronic
potential, which is calculated from the time-independent
Schrödinger equation within the Born–Oppenheimer frame
using ab initio methods, see Sect. 3.1. Both parts form the
molecular Hamiltonian, while Ŵ (t) is the time-dependent
interaction of the molecule with an electromagnetic field, a
laser pulse in our case.

Because we propagate on more than one electronic state,
the wave function |�(t)> is more conveniently written as a
vector and the Hamiltonian operator as a matrix. Eq. (1) then
becomes,

i h̄
∂

∂t




|�0(t)〉
...

|�n(t)〉


 =




Ĥ0,0 . . . Ĥ0,n
...

. . .
...

Ĥn,0 . . . Ĥn,n







|�0(t)〉
...

|�n(t)〉


 (3)

wherein the indexes 0, 1, . . . , n denote the involved (neutral
and ionic) electronic states.

In the adiabatic representation, the matrix elements Ĥ jk
of the Hamiltonian are composed of the following terms:

Ĥ jk = δ jk (T̂ + Vj ) − h̄2

2 m
( T (2)

jk + 2T (1)
jk ∇ ) . (4)

The kinetic or non-adiabatic couplings between the electronic
states j and k, T (1)

jk and T (2)
jk are defined as

T (1)
jk (Q) =

〈
� j (Q)

∣∣∣∣
∂

∂ Q
�k(Q)

〉
(5a)

T (2)
jk (Q) =

〈
� j (Q)

∣∣∣∣
∂2

∂ Q2 �k(Q)

〉
, (5b)



A first principles approach to optimal control 151

Fig. 2 Adiabatic neutral and ionic MRCI/CASSCF potential energy curves as a function of the Mn–CO elongation. Solid lines stand for states of
A′ symmetry and dashed lines for states of A′′ symmetry, in the Cs point group. Arrows indicate which states are populated after the multiphoton
pump and probe pulse, respectively

where � j (Q) are the time-independent electronic wave func-
tions and Q represents the nuclear degrees of freedom con-
sidered in the problem.

The operator for the interaction of the molecule with the
laser field Ŵ (t), as used in Eq. (2), is described by the semi-
classical dipole approximation,

Ŵ (t) = −µi j · E(t), (6)

where µi j is the transition dipole moment between molecular
or ion electronic states i and j (µi i describes the permanent
dipole moment for the state i), and E the time-dependent elec-
tric laser field. The laser field E(t) used in these simulations
is given by the following expression:

E(t) = eE0 cos(ωt) · s(t), (7)

where e is the polarization direction of the field, E0 is the
amplitude of the field, ω the carrier frequency and s(t) the
shape function

s(t) = sin2
(

π(t − td)

tp

)
for td ≤ t ≤ td + tp, (8)

with tp being the pulse duration and td the time delay.
In summary, the decoding of the optimal pulse requires

an analysis of the dynamical processes that take place under
irradiation (cf. Eq. (1)), in this case a pump-probe process,
but to solve for the Hamiltonian, we need first reliable PESs
(cf. Eq. (2)) which can be obtained with the help of ab initio
methods.

In general, when looking at Eqs. (4) and (6), it is obvious
that the solution of Eq. (3) requires the following functions:
(a) a set of PESs described by ab initio methods, which pro-
vide reliable wave functions for the electronic (neutral and
ionic) states involved in the problem, (b) the non-adiabatic

couplings between electronic excited states, and (c) the dipole
couplings with the laser, those involving the transition from
the ground to excited neutral states as well as those relating
the excited neutral states to the ionic states.

Our analysis therefore starts with a review of the low-
lying excited states of CpMn(CO)3, and it will be explained
later on how to obtain the different couplings (b) and (c)
starting from the ab initio wave function.

3.1 Potential energy surfaces

The electronic excited states of CpMn(CO)3 and PESs along
the relevant Mn–CO coordinate can be found in [44] and [45].
Here we present just a short summary of the involved con-
figurations in order to understand the following subsections.

Because we are dealing with a CO fragmentation, the
potential energy curves (PECs) have been computed assum-
ing that the CS symmetry is retained along the reaction path
corresponding to the loss of the axial CO (see Fig. 1). This
assumption is justified in view of the time-scale of the primary
photoprocess investigated, namely the CO loss which oc-
curs within a few tens of fs [29,46]. The relevant one-dimen-
sional neutral and ionic PECs, V(Q), (with Q = [Mn–CO])
are shown in Fig. 2. Calculations have been obtained through
state-averaged CASSCF calculations supplemented by a mul-
tireference configuration interaction (MRCI) treatment [44,
45]. The low-lying ionic states have been calculated as single
roots at the MRCI/CASSCF level of theory.

The a1 A′ electronic ground state conforms to a close shell
electronic configuration of (20a′)2(21a′)2(22a′)2(12a′′)2 (13
a′′)2 assigned to (2πCp)

2(3dz2)2(3dx2−y2)2(3πCp)
2(3dxy)

2.
The low-lying virtual orbitals correspond to 3dyz(23a′), 3dxz
(14a′′) and π∗

C O(24a′, 25a′, 15a′′ and 16a′′).
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Fig. 3 Occupation schemes of the main Slater determinants that contribute to the neutral singlet excited states of 1 A′ (D′
i ) and 1 A′′ symmetry

(D′′
i ), and to the ionic doublet states 2 A′ and 2 A′′ (Dion

i )

The electronic states can be described as a linear combi-
nation of different state configurations or Slater determinants,
i.e., configuration interaction (CI)

|�ν(Q)〉 =
∑

j

Cν j (Q)|D j (Q)〉, (9)

where the |D j (Q)〉 are the Slater determinants represent-
ing any of the neutral electronic states and Cν j are the cor-
responding CI expansion coefficients. Furthermore, in the
CASSCF procedure, the orbitals are simultaneously opti-
mized along with the CI coefficients. The determinants D j
are assumed to be real and orthonormal:

〈D j (Q)|Dk(Q)〉 = δ jk . (10)

Analyzing the four low-lying neutral excited states of
symmetry A′, one sees that they are composed of four main
configurations, which we will denote by D′

1, D′
2, D′

3 and D′
4

respectively. These configurations, which are illustrated in
Fig. 3, differ in the occupation of the highest occupied molec-
ular orbitals for each symmetry. Some orbitals, i.e., 23a′,
13a′′ and 14a′′ show a leading coefficient for one 3d-orbital:
23a′ is mainly a 3dyz , 13a′′ a 3dxy and 14a′′ a 3dxz orbi-
tal. In contrast, orbitals 21a′ and 22a′ are linear combina-
tions of the 3dz2 and 3dx2−y2 orbitals, that we will write
as 21a′ ≈ k21,z2 · 3dz2 + k21,x2−y2 · 3dx2−y2 , and 22a′ ≈
k22,z2 ·dz2 +k22,x2−y2 ·dx2−y2 , where the coefficient ki, j rep-
resents the standard linear expansion of the molecular orbital
into atomic orbitals.

The electronic configurations of the low-lying four excited
states of symmetry A′′ consist of the dominant transitions
shown schematically in Fig. 3. The molecular orbitals enter-
ing in the electronic configurations are mostly pure and all
excitations are 3d–3d transitions except one which is a transi-
tion to a π∗

CO-orbital. Because the π∗
Cp (22a′) orbital remains

doubly occupied in all considered configurations, it is skipped
in Fig. 3.

Likewise, the ionic states can also be described by a linear
expansion of configurations:

|�ion
λ (Q)〉 =

∑
l

C ion
λl (Q)|Dion

l (Q)〉, (11)

where the |Dion
l 〉 are the state configurations representing the

ionic state, and C ion
λl are the CI expansion coefficients. How-

ever, the important three energetically lowest states, a2 A′′,
a2 A′ and b2 A′ states are each described by a pure dominant
configuration that differs from the ground state by removing
one electron from the 3dxy , the 3dx2−y2 and the 3dz2 orbital,
respectively (see Fig. 3).

3.2 Non-adiabatic couplings

The non-adiabatic or kinetic coupling terms T (1) and T (2) are
given in Eqs. (5a) and (5b), respectively. Substituting Eq. (9)
in Eq. (5a) leads to [47]
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T (1)
µν (Q) =

〈∑
j

Cµj (Q)D j (Q)

∣∣∣∣∣
∂

∂ Q

∑
k

Cνk(Q)Dk(Q)

〉

=
∑

j

∑
k

Cµj

(
∂

∂ Q
Cνk

)
〈D j (Q)|Dk(Q)〉

+
∑

j

∑
k

Cµj (Q)Cνk(Q)

〈
D j (Q)

∣∣∣∣
∂

∂ Q
Dk(Q)

〉

(12)

Making use of Eq. (10) and defining

A(1)
µν =

∑
j

Cµj

(
∂

∂ Q
Cν j

)
(13)

and

B(1)
µν =

∑
j

∑
k

Cµj (Q)Cνk(Q)τ jk, (14)

where τ jk is given by,

τ jk =
〈

D j (Q)

∣∣∣∣
∂

∂ Q
Dk(Q)

〉
(15)

we obtain a useful expression to calculate T (1) from a multi-
configurational wave function [47],

T (1)
µν (Q) = A(1)

µν + B(1)
µν . (16)

The term A(1)
µν can be considered like the CI-term, since it

involves the differentiation of the CI coefficients which enter
in the Eq. (9). The second term, B(1)

µν , contains the derivatives
of the configurations or determinants, in other words, takes
into account the change of the orbitals along the reaction
coordinate; thus, it will be referred to as the MO-term.

Knowing T (1) the calculation of the T (2) is straightfor-
ward [48]:

T (2) = ∂

∂qa
T (1) + T (1) · T (1). (17)

In calculating the matrix elements given in τ jk (cf. Eq.
(15)) it is useful to remember that because ∂

∂ Q is a one-par-
ticle operator, according to the Condon–Slater rules, matrix
elements are non-zero only if the determinants D j and Dk
differ in less than two orbitals. Therefore, from the state con-
figurations shown in Fig. 3 for the A′ state and applying the
Condon–Slater rules it follows that,
〈

D′
1(Q)

∣∣∣∣
∂

∂ Q
D′

4(Q)

〉
=

〈
D′

2(Q)

∣∣∣∣
∂

∂ Q
D′

4(Q)

〉

=
〈

D′
3(Q)

∣∣∣∣
∂

∂ Q
D′

4(Q)

〉

=
〈

D′
1(Q)

∣∣∣∣
∂

∂ Q
D′

3(Q)

〉

=
〈

D′
2(Q)

∣∣∣∣
∂

∂ Q
D′

3(Q)

〉
= 0 . (18)

and the only non-vanishing matrix elements are:〈
D′

1(Q)

∣∣∣∣
∂

∂ Q
D′

2(Q)

〉
= −

〈
D′

2(Q)

∣∣∣∣
∂

∂ Q
D′

1(Q)

〉
, (19)

because only D′
1 and D′

2 differ in a single excitation, while the
other matrix elements involve two or more electron exchanges.
These elements can be easily calculated under the assumption
that the atomic orbitals are orthonormal and do not change
significatively along the reaction coordinate. Recalling the
composition of the molecular orbitals 21a′ and 22a′, it is
possible to write,

τ12 =
〈

D′
1(Q)

∣∣∣∣
∂

∂ Q
D′

2(Q)

〉
=

〈
22a′

∣∣∣∣
∂

∂ Q
21a′

〉

=
〈
k22,z2 · dz2 + k22,x2−y2 · dx2−y2

∣∣∣∣
∂

∂ Q

(
k21,z2 · dz2 + k21,x2−y2 · dx2−y2

)〉

≈ k22,z2
∂

∂ Q
k21,z2 + k22,x2−y2

∂

∂ Q
k21,x2−y2 (20)

and

τ21 =
〈

D′
2(Q)

∣∣∣∣
∂

∂ Q
D′

1(Q)

〉
= −τ12 =

〈
21a′

∣∣∣∣
∂

∂ Q
22a′

〉

=
〈
k21,z2 · dz2 + k21,x2−y2 · dx2−y2

∣∣∣∣
∂

∂ Q

(
k22,z2 · dz2 + k22,x2−y2 · dx2−y2

)〉

≈ k21,z2
∂

∂ Q
k22,z2 + k21,x2−y2

∂

∂ Q
k22,x2−y2 , (21)

where ki j are the corresponding coefficients of the molecular
expansion.

The averaged terms τ12 and τ21 are shown in Fig. 4,
together with the calculated A(1)

bc and A(1)
cb , as well as B(1)

bc

and B(1)
cb , terms. Using Eq. (16) we can obtain the first order

kinetic coupling element T (1)
bc between the states b1A′ and

c1A′, see Fig. 5a. From Eq. (17) we obtain the second order
kinetic coupling T (2)

bc between the same states; this is shown
in Fig. 5b. Non-adiabatic couplings between other states of
A′ or A′′ symmetry can be calculated in a similar fashion. As
regards the relevant potentials shown in Fig. 2, it is impor-
tant to mention that the coupling between the states b1A′ and
c1A′ is very weak, while that between the states a1A′′ and
b1A′′ is very strong. As a result, non-adiabatic losses are only
expected to occurr between the a1A′′ and b1A′′ states.

3.3 Dipole couplings

The interaction with the laser is defined by the dipole cou-
plings given in Eq. (6). In order to calculate pump-probe
signals, one needs not only (a) transition dipole moments
(TDM) between the ground and the electronic excited states,



154 L. González, J. Full

Fig. 4 Contributions to the non-adiabatic couplings between the b1 A′ and c1 A′ states. a τ12, as defined in Eq. (15): b Elements A(1)
bc and A(1)

cb , as

defined in Eq. (16): c Elements B(1)
bc and B(1)

cb , as defined in Eq. (16)

but also (b) TDM between the neutral excited states and the
ionic states. In the former case, the TDM are routinely cal-
culated at the same level of theory as the PES, i.e., in this
case with the MRCI/CASSCF method. In the latest case, such

calculation is by no means standard; as a consequence, it is
very often that the Condon approximation is assumed, that
is that the neutral-to-ionic TDM is set to a constant equal
to one. In [49] however, we have suggested a procedure to
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Fig. 5 Numerical non-adiabatic or kinetic coupling between the b1 A′ and c1 A′ states, calculated from the CI- and MO-coefficients of the
multireference configuration interation (MRCI) wave function. (a) T (1)

bc , (b) T (2)
bc

calculate coordinate dependent neutral-to-ionic TDM start-
ing from multiconfigurational wave functions.

Specifically, the transition dipole element for a transition
from the neutral excited state �ν to the ionic state �ion

λ med-
iated by the total electronic dipole operator M

M =
N∑
i

µi (22)

with N electrons can be approximately calculated as [49]

〈�ν |M|�ion
λ 〉 ≈

∑′
j

∑′
l
Cν j C

ion
λl · det(Uα) · det(Uβ)

·〈χ jν |µ|χZ E K E 〉 (23)

where χZ E K E is the orbital corresponding to the ionized elec-
tron, the factor det(Uα) · det(Uβ) accounts for the overlap

between those orbitals with α and β spins that are not frozen
during the ionization process, and Cν j and C ion

λl are the CI
expansion coefficients defined in Eqs. (9) and (11), respec-
tively. The prime ′ indicates that the sum is made only over
the CI-coefficients belonging to determinants that differ by
one and only one spin orbital from the initial Slater determi-
nant. This is a consequence of the Slater–Condon rules, i.e.,
matrix elements are zero if the two determinants involved
differ by two or more spin orbitals.

In the excited states characterizing CpMn(CO)3, det(Uα)·
det(Uβ) is just given by 〈χm |χ̃m〉 [49], i.e., by the overlap
between the spin orbitals which relax in going from the neu-
tral to the ionic determinant. Furthermore, the ionic states
of CpMn(CO)3 can be safely defined by a single configura-
tion (see Sect. 3.1). Hence, assuming that the matrix element
〈χ jν |µ|χZ E K E 〉 is a constant, Eq. (23) reduces to
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Fig. 6 Neutral-to-ionic zero kinetic energy (ZEKE) dipole couplings between the ionic states a2 A′′(—), a2 A′(- - -), b2 A′(–·–) and the neutral
excited state c1 A′ of CpMn(CO)3 (in arb. units)

〈�ν |M|�ion
λ 〉 ≈ const.

∑′
j
Cν j 〈χm |χ̃m〉

≈
∑′

j
Cν j 〈χm |χ̃m〉. (24)

Equation (24) tells us that the first step in calculating the
TDM between a particular excited state and a neutral one is
to identify those neutral and ionic configurations that differ in
only one orbital. Then, their coordinate dependent CI-coeffi-
cients will approximately provide the coordinate dependence
of the TDM. As example, let us take �ion

λ = (a2 A′′)+ and
�ν = c1 A′. Then, from Fig. 3 we see that the TDM from
c1 A′ → (a2 A′′)+ must be proportional to the coefficient Cc,3

(where c denotes c1 A′ and 3 the Slater determinant D′
3), since

the ionic configuration Dion
1 (a2 A′′) differs in only one orbi-

tal, from the configuration D′
3, but in more than one orbital

from D′
1, D′

2 and D′
4. For this particular transition the rest of

the orbitals remain frozen; therefore, the CI-coefficient Cc,3
is the only term entering in Eq. (24),

〈c1 A′|M|(a2 A′′)+〉 ≈ Cc,3(Q) (25)

To find the transition dipole moments between the c1 A′
excited states and the other two ionic states, the mixing be-
tween the 3dx2−y2 and the 3dz2 character present in the orbi-
tals 21a′ and 22a′ has to be taken into account. Consequently,
the corresponding neutral-to-ion TDM are given by [49],

〈c1 A′|M|(a2 A′)+〉 ≈ Cc,1〈21′|3dx2−y2〉
+Cc,2〈22′|3dx2−y2〉 (26)

and
〈c1 A′|M|(b2 A′)+〉 ≈ Cc,1〈21a′|3dz2〉

+Cc,2〈22a′|3dz2〉 (27)
The resulting transition dipole moments for the exemplary
c1 A′ state are plotted in Fig. 6.

4 Application

The optimal pulse obtained in [29] for the maximization
of the ionization, i.e., maximum signal of the CpMn(CO)+3
peak, resulted in a pulse shape showing two main peaks of
intensities 2:3. The initial wavelength used in the control
experiment was of 800 nm (1.55 eV). In contrast, the opti-
mized first subpulse was blue shifted to 798.7 nm, while
the frequency of the second one was almost not changed
(800.1 nm) with respect to the initial central wavelength. The
initial transform-limited pulse had 87 fs of duration; the two
optimized subpulses are separated by ca. 85 fs and have dura-
tions of about 40 fs.

The task now is to puzzle out how the structure of the opti-
mal pulse controls the dynamics of the system towards the
desired direction. The time profile of the pulse, together with
the intensity ratio of 2:3 suggest that the initial transform-
limited pulse has been divided into two subpulses designed
to perform a pump-probe experiment with optimal frequen-
cies and optimal time delays. According to the excitation
energies of the neutral excited PESs (see Fig. 2), it is reason-
able to assume that the first subpulse is tailored to achieve a
two-photon excitation of CpMn(CO)3 to any of the electronic
excited states. After some optimal delay, the second subpulse
excites population to an ionic state in a three-photon process.
The reaction mechanism is such that predominantly the par-
ent ion should be obtained, while CO fragmentation should
be avoided. This implies that the excited states that are pop-
ulated after the pump pulse must be bound or show weak
non-adiabatic couplings.

In the following, we will use the PESs and couplings
obtained in Sect. 3 to simulate the pump-probe spectrum
which can explain the dynamics behind the optimal pulse.
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Fig. 7 Difference potentials between the ionic states a2 A′′(—), a2 A′(- - -), b2 A′(–·–) and the neutral excited c1 A′ state. The horizontal line
indicate the photon energy 4.716 eV of the probe laser pulse

Inspection of the neutral adiabatic PECs depicted in Fig. 2
indicates that there exists several avoided crossings around
the Franck–Condon geometry at ca. 1.8 Å [45]: one is between
the b1 A′ and c1 A′ states and another between the a1 A′′ and
b1 A′′ states, respectively. The adiabatic b1 A′ potential is
dissociative leading directly to the primary products CO +
MnCp (CO)2 whereas the c1 A′ presents a small energy bar-
rier around 2.5 Å that will prevent dissociation. The a1 A′′
and b1 A′′ states are nearly degenerate around the equilibrium
geometry and avoid each other at this point; a1 A′′ dissociates
into CO + MnCp(CO)2, whereas b1 A′′ is bound. Taking into
account the non-adiabatic couplings calculated in Sect. 3.2
we can predict that out of the four states that are energetically
accessible within the pump pulse (cf. Fig. 2) only the c1 A′
state avoids dissociation. Indeed, wave packet propagations
in the b1 A′′ state indicated that CO fragmentation takes place
due to the strong non-adiabatic couplings with the a1 A′′ state
[45].

To populate the c1 A′ state we employ a pump laser of
3.49 eV, equivalent to two photons of 1.745 eV each (dis-
crepancies with the experimental laser energies are within
the error of the calculated PES, typically of 0.1–0.3 eV).
To probe the system we employ a probe laser of 4.716 eV,
equivalent to three photons of 1.572 eV. To see which ionic
states (cf. Fig. 2) are accessed with this energy we plot the
difference potentials between the c1 A′ state and the three
lowest ionic potentials. In Fig. 7 we see that the probe pulse
is resonant to the (b2 A′)+ state at 2.3 Å; this nuclear con-
figuration is located slightly before the barrier maximum of
the c1 A′ neutral excited state. 4.716 eV is also resonant with
the other two ionic states, (a2 A′)+ and (a2 A′′)+, at values
larger than 2.5 Å. After exciting to the c1 A′ state a big part of
the wave packet is trapped in the potential well. Therefore,

the wave packet cannot be probed to the energetically lower
ionic states, (a2 A′)+ and (a2 A′′)+, because these states are
resonant only after the barrier. Moreover, the TDM corre-
sponding to the c1 A′ → (b2 A′)+ transition (Fig. 6) is larger
than that corresponding value for the transitions to other ionic
states. As a result, we can conclude that contributions from
the a2 A′′ and b2 A′′ ions are negligible and the only ionic state
that contributes to the pump-probe signal is the energetically
highest ionic state, (b2 A′′)+.

The resulting pump-probe spectrum is shown in Fig. 8.
According to the pump frequency, the main part of the wave
packet is trapped in the c1 A′ potential, but it releases popula-
tion each time it reaches the barrier centered around 2.3 Å [45].
The resulting slowly decaying signal shows maxima at 85
and 260 fs and minima at 180 and 360 fs. Obviously it is
most efficient to probe the system before population decays.
Thus, after 85 fs (first maximum), shortly before the barrier,
when the wave packet has reached 2.5 Å the second subpulse
prepares the parent ion in the (b2 A′′)+ state.

5 Summary and outlook

An optimal control pulse tailored to enhance ionization while
avoiding CO fragmentation in the organometallic complex
CpMn(CO)3 has been studied. Using accurate ab initio or
first principles calculations and wave packet simulations we
have interpreted the reaction dynamics induced by the opti-
mal field.

First, ab initio MRCI/CASSCF potential energy curves
have been calculated for the low-lying neutral singlet and
doublet ionic states along the Mn-CO coordinate of
CpMn(CO)3. Triplet states are not considered since the loss



158 L. González, J. Full

Fig. 8 Pump-probe spectrum of CpMn(CO)3 obtained using a pump laser of 3.49 eV and a probe laser of 4.716 eV

of the first CO takes place in less than 200 fs. Next, non-adia-
batic couplings have been approximately calculated using the
leading CI and MO coefficients of the MRCI wave function.
With the experimental photon energies, only the lowest neu-
tral excited singlet states, b1 A′, c1 A′, a1 A′′ and b1 A′′ can be
populated. These neutral excited states, the electronic ground
state a1 A′, and the ionic doublet states (a2 A′′)+, (a2 A′)+
and (b2 A′)+ have been included in our theoretical simula-
tions of the pump-probe and control experiments. Finally,
ab initio transition dipole moments for transitions betweeen
the ground and the excited electronic states have been cal-
culated at the MRCI/CASSCF level of theory, and transition
dipole moments between excited neutral to the ionic states
have been estimated using the CI and MO coefficients of the
MRCI wave function.

Using the former first principles information our wave
packet propagations in the adiabatic representation indicate
that the mechanism to optimize the parent ion yield must
avoid population on the b1 A′′ and b1 A′ states and instead it
should predominantly excite the bound c1 A′ state. The probe
pulse should be resonant to an ionic state at a nuclear con-
figuration previous to the c1 A′ potential barrier, otherwise
population would decay by dissociation into neutral frag-
ments. According to the difference potentials and the inten-
sity of the neutral-to-ionic transition dipole moments it is only
the (b2 A′)+ state which fulfill these requirements. The theo-
retical pump-and-probe spectrum which populates the c1 A′
and the (b2 A′)+ states, respectively, indeed predicts that the
experimental delay between the two subpulses corresponds
to an optimal delay time of 85 fs between the pump and the
probe pulse.

In summary, this work demonstrates that based on accu-
rate ab initio or first principles calculations it is possible to
obtain PES and couplings which allow to perform reliable

quantum dynamical simulations to support control experi-
ments. In this case, the relatively easy form of the pulse shape
and the intuitive hypothesis of an optimal pump-probe pro-
cess helped successful interpretation of the intrinsic dynam-
ics of the pulse. More complicated pulse forms may result
in more complex reaction paths. For instance, the mere com-
petition of two channels leading to two different chemical
products, e.g. competing ligand fragmentation, may involve
subtle reaction paths involving control through conical inter-
sections. Another issue to be taken into account is that even
if the dissociation starts in the neutral surface it may finish
in the ionic states where also crossings of states are possible.
Moreover, our simulations use a zero kinetic energy (ZEKE)
approach, meaning that the photodetachment process is not
simulated discretizing the continuum but asumming quasires-
onant transitions between neutral and ionic states [50]; the ac-
count of continuum states or even a time-dependent descrip-
tion of the photodetached electron may uncover important
details of the ionization process. Any of the aspects just men-
tioned constitutes an issue in itself. Hence, the simultaneuos
consideration of all such factors by the simulation of close-
loop or adaptive control experiments can still pose a consid-
erable challenge for theoreticians.

In any case, the combined efforts of future laser experi-
ments and theoretical simulations will further illuminate the
fascinating relationships between light and molecular struc-
tures which one day may lead chemists to use crafted laser
pulses as new reagents [51].
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